7,911 research outputs found

    The incidence and clinical burden of respiratory syncytial virus disease identified through hospital outpatient presentations in Kenyan children

    Get PDF
    There is little information that describe the burden of respiratory syncytial virus (RSV) associated disease in the tropical African outpatient setting. Methods We studied a systematic sample of children aged <5 years presenting to a rural district hospital in Kenya with acute respiratory infection (ARI) between May 2002 and April 2004. We collected clinical data and screened nasal wash samples for RSV antigen by immunofluorescence. We used a linked demographic surveillance system to estimate disease incidence. Results Among 2143 children tested, 166 (8%) were RSV positive (6% among children with upper respiratory tract infection and 12% among children with lower respiratory tract infection (LRTI). RSV was more likely in LRTI than URTI (p<0.001). 51% of RSV cases were aged 1 year or over. RSV cases represented 3.4% of hospital outpatient presentations. Relative to RSV negative cases, RSV positive cases were more likely to have crackles (RR = 1.63; 95% CI 1.34–1.97), nasal flaring (RR = 2.66; 95% CI 1.40–5.04), in-drawing (RR = 2.24; 95% CI 1.47–3.40), fast breathing for age (RR = 1.34; 95% CI 1.03–1.75) and fever (RR = 1.54; 95% CI 1.33–1.80). The estimated incidence of RSV-ARI and RSV-LRTI, per 100,000 child years, among those aged <5 years was 767 and 283, respectively. Conclusion The burden of childhood RSV-associated URTI and LRTI presenting to outpatients in this setting is considerable. The clinical features of cases associated with an RSV infection were more severe than cases without an RSV diagnosis

    Microelectrode array recordings from the ventral roots in chronically implanted cats

    Get PDF
    ventral spinal roots contain the axons of spinal motoneurons and provide the only location in the peripheral nervous system where recorded neural activity can be assured to be motor rather than sensory. This study demonstrates recordings of single unit activity from these ventral root axons using floating microelectrode arrays (FMAs). Ventral root recordings were characterized by examining single unit yield and signal-to-noise ratios (SNR) with 32-channel FMAs implanted chronically in the L6 and L7 spinal roots of nine cats. Single unit recordings were performed for implant periods of up to 12 weeks. Motor units were identified based on active discharge during locomotion and inactivity under anesthesia. Motor unit yield and SNR were calculated for each electrode, and results were grouped by electrode site size, which were varied systematically between 25 and 160μm to determine effects on signal quality. The unit yields and SNR did not differ significantly across this wide range of electrode sizes. Both SNR and yield decayed over time, but electrodes were able to record spikes with SNR >2 up to 12 weeks post-implant. These results demonstrate that it is feasible to record single unit activity from multiple isolated motor units with penetrating microelectrode arrays implanted chronically in the ventral spinal roots. This approach could be useful for creating a spinal nerve interface for advanced neural prostheses, and results of this study will be used to improve design of microelectrodes for chronic neural recording in the ventral spinal roots. © 2014 Debnath, Bauman, Fisher, Weber and Gaunt

    An Electrocorticographic Brain Interface in an Individual with Tetraplegia

    Get PDF
    Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals

    Why is there no queer international theory?

    Get PDF
    Over the last decade, Queer Studies have become Global Queer Studies, generating significant insights into key international political processes. Yet, the transformation from Queer to Global Queer has left the discipline of International Relations largely unaffected, which begs the question: if Queer Studies has gone global, why has the discipline of International Relations not gone somewhat queer? Or, to put it in Martin Wight’s provocative terms, why is there no Queer International Theory? This article claims that the presumed non-existence of Queer International Theory is an effect of how the discipline of International Relations combines homologization, figuration, and gentrification to code various types of theory as failures in order to manage the conduct of international theorizing in all its forms. This means there are generalizable lessons to be drawn from how the discipline categorizes Queer International Theory out of existence to bring a specific understanding of International Relations into existence

    The application of statistical network models in disease research

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling frameworks for hypothesis testing related to social interactions and epidemiology, illustrating some approaches with worked examples using data from a population of wild European badgers Meles meles naturally infected with bovine tuberculosis. Different empirical network datasets generate particular statistical issues related to non-independence and sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different types of network data and for answering different questions relating to disease transmission. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential in directly relating network structure to infection. They have the potential to be powerful tools in analysing empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio-temporal associations. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given the ready availability of dynamic network data from bio-logging studies. Furthermore, we encourage improved integration of statistical network approaches into epidemiological research to facilitate the generation of novel modelling frameworks and help extend our understanding of disease transmission in natural populations.M.J.S. is funded by a NERC standard grant (NE/M004546/1) awarded to R.A.M., D.P.C., D.J.H. and M.B., with the APHA team at Woodchester Park, UK (lead scientist is R.J.D.) as project partners

    MEG-based neurofeedback for hand rehabilitation

    Get PDF
    Background: Providing neurofeedback (NF) of motor-related brain activity in a biologically-relevant and intuitive way could maximize the utility of a brain-computer interface (BCI) for promoting therapeutic plasticity. We present a BCI capable of providing intuitive and direct control of a video-based grasp. Methods: Utilizing magnetoencephalography's (MEG) high temporal and spatial resolution, we recorded sensorimotor rhythms (SMR) that were modulated by grasp or rest intentions. SMR modulation controlled the grasp aperture of a stop motion video of a human hand. The displayed hand grasp position was driven incrementally towards a closed or opened state and subjects were required to hold the targeted position for a time that was adjusted to change the task difficulty. Results: We demonstrated that three individuals with complete hand paralysis due to spinal cord injury (SCI) were able to maintain brain-control of closing and opening a virtual hand with an average of 63 % success which was significantly above the average chance rate of 19 %. This level of performance was achieved without pre-training and less than 4 min of calibration. In addition, successful grasp targets were reached in 1.96 ± 0.15 s. Subjects performed 200 brain-controlled trials in approximately 30 min excluding breaks. Two of the three participants showed a significant improvement in SMR indicating that they had learned to change their brain activity within a single session of NF. Conclusions: This study demonstrated the utility of a MEG-based BCI system to provide realistic, efficient, and focused NF to individuals with paralysis with the goal of using NF to induce neuroplasticity

    S100A1 (S100 calcium binding protein A1)

    Get PDF
    Review on S100A1 (S100 calcium binding protein A1), with data on DNA, on the protein encoded, and where the gene is implicated

    Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Data accessibility: The original weighted adjacency matrix for the high‐density population of European badgers, as well as code used for simulating networks and disease simulations can be found online https://doi.org/10.5061/dryad.49n3878.Population structure is critical to infectious disease transmission. As a result, theoretical and empirical contact network models of infectious disease spread are increasingly providing valuable insights into wildlife epidemiology. Analyzing an exceptionally detailed dataset on contact structure within a high-density population of European badgers Meles meles, we show that a modular contact network produced by spatially structured stable social groups, lead to smaller epidemics, particularly for infections with intermediate transmissibility. The key advance is that we identify considerable variation among individuals in their role in disease spread, with these new insights made possible by the detail in the badger dataset. Furthermore, the important impacts on epidemiology are found even though the modularity of the Badger network is much lower than the threshold that previous work suggested was necessary. These findings reveal the importance of stable social group structure for disease dynamics with important management implications for socially structured populations.Natural Environment Research Council (NERC

    Motor-related brain activity during action observation: A neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Get PDF
    After spinal cord injury (SCI), motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation (AO), in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, AO can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI) even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG)-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz) and the high-gamma band (65-115 Hz) which contains significant movement-related information. We observed significant motor-related high-gamma band activity during AO in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that AO could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with paralysis. © 2014 Collinger, Vinjamuri, Degenhart, Weber, Sudre, Boninger, Tyler-Kabara and Wang
    corecore